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ABSTRACT

The sclution of the nonlinear differential equation

Yy o)y - b =0 (v = )
dt

is considered. The object of the study is to determine the first terms
of the asymptotic expansion of the solution for small &. The method
used is to perturb the solution obtained from a certain similar equation,
in this case the equation for the elliptic sine, which differs from the
sbove equation only in that the slowly varying coefficients a and b
are replaced by constant values.
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NATTONAL AERCNAUTICS AND SPACE ADMINISTRATION

ASYMPTOTIC SOLUTION OF A NONLINEAR DIFFERENTIAL
EQUATION OF SECOND ORDER¥*

By G. E. Kuzmak

In this paper there is considered the equation

2
j—t% + a(t)y - b(Tt)y° = 0 (T =¢t) (0.1)

frequently encountered in various technical problems. The object of the
study is to determine the first term of the asymptotic expansion of the
solution for small €. An analogous problem was considered in references
1l and 2.

The msthod here applied consists in expressing the solution of this
equation in terms of the solution of a certain analogous equation ("“stand-
ard equation"). This method of "standard equations" has been worked out
in the case of linear equations (refs. 3 and 4); however, it apparently
has not been applied to nonlinear equations.

In the case under consideration, there has been chosen as "standard"
the equation for the elliptic sine (see eq. (1.7)), which differs from
(0.1) only in that the slowly varying coefficient appearing in it is
replaced by a constant magnitude.

1. Computation of the first terms of the asymptotic expansion. - In
order to find the asymptotic expansion of the solution of equation (0.1),
it is first necessary to represent the dependence of the solution on the
time and a small parameter.

In this case, if the coefficients a and b are constant, the so-
lution of equation (0.1) is the function A sn(et,v), where A, ¢, and
v are certain constants.

In the case of slowly varying coefficlents, the solution will be
some function close to the elliptic sine function, but with a variable

*"Asimptoticheskoe reshenie odnogo nelineinogo differentsial’nogo
uravneniya vtorogo poryadka." Prikladnaya matematika i mekhanika, vol. 21,
no. 2, 1957, pp. 262-271.
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amplitude, frequency, and modulus. Hence, in this case the solution
can be represented in the formt

y = A(T)sn[T(v)w, v(T)] + O(e) (0 = fo(T)dt) (1.1)

Examination of (1.1) shows that the solution depends on the vari-
sbles T and , the derivatives of which dt/dt = ¢ and dw/dt = ¢(1)
are magnitudes of different order with respect to €.

Setting y = y(7T,w,¢e), we shall seek y as a function of the two
varisbles T and ®. Equation (0.1) assumes the form

2 32
(PZZDZ + 8(2(9%55_ + 0 %l)+ 62—2-?37 + a(t)y - b(g)yd =0 (1.2)

We shall seek the solution with an accuracy up to terms of order 52:

= yolt, ®) + eyy(, ©)

Substituting this expression in equation (1.2), we obtain

d%y
{¢2 awao + a(T)yo - b(T)yos}-+

(1.3)
€402 azyl + Ja(t) - 3p(t)y 2 + 2¢ azyo + o 90 + e2A(%) =
* Sz Yo 91 R T }
where 5
Bzy Oy o“y D8y
2 1 l 0 1
A(t) = - 30(T)yoy,” + 20 o5t * o' 5 5 > i b('c)ylz’

In order to satisfy this equation with an accuracy up to 82, it
is sufficient to require that the functions yg(t,w) and yy(v,») satis-
fy the equations

Bzy
L awzo + a(t)yg - b('t)yo3 =0
(1.4
2 G 2 . 3%, 9Y0 )

l‘I‘hroughout the present paper we shall denote by v the square of
the modulus of the elliptic functions and integrals. In this connection,

in place of the usual notations sn(u,/v), cn(u,/v), dn(u,n/v), K( /),
and E(\/\T), we shall write sn(u, v), cn(u,v), dn(u,v), K(v), and E(v).

2ve-d
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To find the solution of the first equation of this system, we put

Yo = A(T)sn[T(T)w,v(T)] = A(T)sn u, u = T(T)w (1.5)
From (1.5) we have
s d2 2
Fo_ 2%, Vo, (1.6)
& ou ow Jou

Substituting these formulas in the eguation for yp(<T,0), we obtain

2
ATZ P .5__%2 + a(T)A sn u - b(T)adsndu = 0

Replacing in this equation O%sn u/éu2 with the aid of the fol-
lowing equation (ref. 5)

d%sn u
du?

+ (1 + V)snu - ZVsnSu =0 (1.7)

we have

[-T22%(1 + v) + a(t)] + sn%u[T%%v - b(T)a%) =0
In order to satisfy this relation, let us put

©2T2(1 + v) = a(t) @2T22v = p(T)AZ (1.8)

The additional two relations for determining o{t), T(T), A(T), and
v(t) we obtain from the condition of the periodicity of the function
yl(T;») with respect to .

As will be shown in section 2, this condition is sufficient for the
terms that we neglected in (1.3) to be O(€2) on the time interval
0<t<Tp/e.

We proceed further to the determination of the function yl(T,m).

From (1.6) we have

52Yo d sn u d%sn u du  d%sn u
= ' 1 1.9

where the prime denotes differentiation with respect to T . We note that



%\%=u_T_'_, %:T (1.10)

Using relations (1.9) and (1.10), we rewrite the equation for
y1(T®) in the form

52
12 2014 (alx) - So(e)y Elyy = FTu) (1.11)
ou -
where %
. \ 3%sn u [5 sn u , ,O0snu ,]
F(t,u) = - [2¢(AT)' + @'AT] . 20AT ———a—;é— u(InT)' + —~; ¥
(1.12)

Let us find the solution of the homogeneocus equation. Differentia-
ting for this purpose the first equation of the system (1.4),

2 /3 o)
o212 %1.2_(.%9) + [ale) - F(a)yo?] <2 = 0 (1.13)

whence it 1s seen that the function

o = d snu
ou
is the required function.

In order to write out the expression for the function yl(r, u),

we put

y1(T, v) = u[ E(t, w)du (1.14)
0

Substituting this expression in equation (1.11), after several
transformations we obtain

u
E(t,u) = -—]-—/ ﬂlﬁz—;)odu
o ©OT

e

Replacing F(T, u) with the aid of (1.12), we obtain

3
E(T, 'll) = = 1 Z(P(AT)' + @'AT Jl + 2A§ :.LI'ITIl JZ + 2AV JS}
(0 sn u/au)z (p2T2 ol oT

(1.15)
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where

u u u
3, =/ (5 sn u)zdu, 3y = uazstznuasnudu’ Ts =/8 sn u 9 snu g,
0 du du du 0 oduwv du

(1.16)

We further compute the derivative of the elliptic sine with respect
to the modulus. For this purpose we make use of the known relations
(ref. 5) for

(a °n u)z =1 - (1 +v)sn2u +vsnu (1.17)
T du
Differentiating it with respect to v,

z
d snuo'snu =[-(1+ v)snu+ 2vsn3u]a sn u -sn®u + snfu

du dudv v * 2

_dsnudsnu _ sn?u cnu
dul ov 2

The obtained relation is a linear differential equation of the first
order with respect to the function dsn u/dv. Solving it, we have

0

d snu 1asnu/sn2u

= -1 du (1.18)
dv 2 Ou ; an2u

In order to write out the conditioms of periodicity, we transform
the integrals Jz and Jz in such manner as to represent them in the

form of a sum of integrals of positive functions

u

1 d (3 sn u)? 1 (Bsnu)2

'z Efu’a'a(""&l_)du‘E[u—Tau_ 1
0 (1.19)
ra u
| o9snu o (dsnu _(Bsnuasnu) _fasnuasnu

’s Su au( Sv )d““ S ov Moy T o

(8]

Meking use of (1.18) for Osn u/dv and integrating by parts, we
reduce the expression for Jz to the form




u u
1(3 sn u\é[ snu 1 (B sn u)zsn2 u
Iy = - Z( 5 >/ 5. du - 4/ 5o PR du (1.20)
0 0
In these formulas (see ref. 5)

d snu

—5;— =cmudnu (1.21)

Substituting formulas (1.19) and (1.20) in the expression for
E(t, u), we have

u
E(t, u) = - Ay [i_lP__T u - 1] snfu du:l +
oT dv 2 0 dnzu

u u
2
1 [d in A q>T/ cnu dnéudu - % /snzu cnzudu:l
cnZu dnéu dv 0 0

From this it follows that if the functions d 1n T/dv and
d 1n A%T/dv satisfy the conditions

(1.22)

w+2K(v) 5 2 +2K(v)
i—gl——T 2K(v) = % snzu du, 9——]&5&——1' cn?u anudu
v u dn“u v
u+K(v) (1.23)
= _32: snu cnudu
u

then the following relation holds:

E (T, u) = B(t, u + 2K(v)) (1.24)
where X(v) is the complete elliptic integral of the first kind.
In virtue of the periodicity of the functions under the integral

signs in (1.23) and their symmetry with respect to the point u = K(v),
we have

2¥e-d
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K(v)
dlm T 1 snfu s
dv 2K(v) o dnfu

2 K(v) K(v)
M_ = 1 snzu cnzudu/ dnzu cnzudu
dv 2 0 0

Introducing the new variable of integration { = sn u and using
the following formulas (ref. 5)

(1.25)

cnfu = 1 - gz, dnfu = 1 - vEZ, ou - 1

S VI -2 - )

it is not difficult to transform these relations to the form

dlnT 1 ak(v) d 1n AZQT 1 aL(v
dv ~ K(v) av °’ dv =T IV) c(lv) (1.26)
where
[
XK(v) = d s L(v) = _\/(1 - e2)(1 - ve2) a
o /(1 - B)(1 - veR) 0 g : (5.27)
Whence, evidently,
(1) = K(v(x)), A%(7)e(t)T(T)L(v(t)) = const (1.28)

From (1.22) we have E(t, u) = -E(t, -u), whence

/K(V) E(t, u)du = 0
-K(v)

From the periodicity of E(1, u) (see (1.24)), it follows that

/u+2K(v) E(t, u)du =/‘K(V) E(t, u)du
u -K(v)

Consideration of these relations and formula (1.14) permits the
conclusion that y (v, u) = y(%, u + 4K(v)}).



For what follows we introduce the following notations:

o) = AlTW(x) 5(v, ®) = sn [K(v)o,v] (1.29)
K(v(x))o(z), ’

G(v,») = -K(v)cn K(v)w dn K(v)w [QK(_V.).(D _ K(v) sn®K(y)op 2]dm1+
0

d
e A e
w w1
5 E(Vlz [_ d in L(v) cnzK(v)wzdnzK(v)wzdmz
5 cm K(v)w,dn K(V)ml dv 0
w1
- %.f sn’zK(v)wzcnzK(v)wzdmz] dw, (1.30)
0

In these notations, on account of (1.5), (1.14), and (1.22), the
formulas for ygo(t, ®) and yq(t, ®) assume the form

YO(T) ®) = A(t) S[v(t), o], yl(TJ w) = p(t) Glv(T), o] (1.31)
In order to determine yg(t, ®) and yy(t, ®) as functions of t,

it is necessary in formulas (1.31) to replace 1 and ® with the aid
of the relations

T =68, o= fq)('r)dt

2. Theorems on estimates. - Lemma 1: Let

d2y

&+ no)y = nl@), oy

=a,, %a):():B

=0
If the functions m(w) and n(w) are bounded for ® > O so that

|m(w) [< M and [n(w)| < N, then for y(w) and Jdy/dw for > 0, the
following estimates hold:

ly(@)] < |a] cn -\/ﬁw+—\|/§l_| sh -\/I‘7I(1>+l%(ch Mo - 1)

<|la] v/Msh \/ Mo+ ]BIch-\/ﬁm+‘\/1_\;\_4_ sh /M o

(2.1)

dy
3w

2ve-d
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The proof can easily be conducted with the 8id of the method of suc-
cessive approximations.

Lemma 2: Let
1-Q%<vel - g8 (2.2)

where q 1s an arbitrarily small number and Q an arbitrarily large
number.

Then for -« < ®w < », the following estimates hold:

N
Is(v, )] = 1, la—s%vi) < ¢,(a, Q), %ﬁ—;ﬂ < ¢y, v(a, Q)
|G(v, )] < D(a, @), |28, ®)|< p(q, Q)

l 3w ' ® \

AG(v, w)

v

< Dy,v(a, Q)

< Dy(a, @), Ia%(gvi)

BZG v ) < J
__gééz-ﬁl- < Dv,v(a, Q) (2.3)

To prove this we note first of all that for condition (2.2) it fol-
lows from the definition (1.27) of the functions K(v) and L(v) that

arK(v)
avT

arL(v)
avt

< Er(Q; Q), < Fr(Q.; Q) (r=O,l,2,5,...) (2.4)

In virtue of the fact that, for the values v and  considered,
the functions sn K(v)w, cn K(v)w, dn K(v)® assume only real values,
there follows from the known formulas

snK(v )w + cn?K(v)w = 1, anZK(v Jo + vsn?K(v o = 1
the estimates

|sn K(v)o | £ 1, len K(V)w | <1, |dn K(v)a.)|<__ -‘/l + v

Using these inequalities we obtain (see (1.21) and (1.29))

<KO) WIE VT (2.5)

os(v, w)

IS(V: (D)lﬁl, lT
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We shall now prove inequalities (2.3) for values of o contained
in the interval O g ®w< 4. From (1.7) we have

_5.2_2. + K2(v)[(1 + v) S - 2vs®) = 0, 8(v, ®)

=0, ﬁ%ﬂ =K(v)

w=0

w=0

Differentiating this equatlion and the initial conditions twice with
respect to v, we cbtain

N
(2 ntr, o) - - Az o g 2 o
>(2.6)
B0, 0)| L, %(BS(VVZ m)) . k()
=0 w=0 J

5
32 <52s> (azs) [ ak2(v)(1 + v) 5 aK2(v)v
— — (V (D) R = — + 68

2w \ov2 /T Y G2

dy dv
dm(v, ) |38 _ a2k3(v)(1 + v) d2K2(y)v o3
____5;;__& pov S + 2__52_8 L(2.7)
3%s(v, ) o, 2 (azs(\,z w)) _ a%k(v)
2 w=0 3 ave ®=0 av? <

where

m(v, ©) = KEOW)[(1 + v) - 6v8%(v, )]

In virtue of inequalities (2.4) and (2.5), in equation (2.6) the
coefficients, the right side, and the initial conditions are bounded.
Hence, with the aid of lemma 1 it is possible to specify constants
Cv(q,Q) and cv’w(q,Q) such that for 0< w< 4

2
98y, 0) | < ¢,(q, a), B, o)< ¢, (e, @) (2.8)

Further, on account of the inequalities (2.4), (2.5), and (2.8), in
equation (2.7) the coefficients, the right side, and the initial conditions
are bounded. Hence, also with the aid of lemma 1, it is possible to spec-
ify constants Cv)v(q,Q), and Cv,v,w(q’Q) such that for 0 < w < 4

2%2-1
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G 3
a.gfﬁ, ©)| o c, (@ Q) l§—§£§$§92 2C, ,.0(0 Q) (2.9)

Further, from formulas (1.4) and (1.31), we have

2
%;Z-Gz— + m(v, ) G = K(v) [d 1n Lc(l:)K(") %% -2 %Egi]

(2.10)

G W =0 -
(v, @) |w=0 ow lm:O

Differentiating these relations twice with respect to v, we obtain

-~

3% (3G 3G\ om d d 1n L(v)K(y) 35 ., d°s
) ¢ =e(3) - '5;“&{“‘"’[ o a;'z?a@:]

?-
AG(v, w) 9 (3G(v, w) -
ﬁ%l =% & (ﬁ%L‘)' =0
=0 w=0 )
(2.11)
2 (Ze) - v, w1 (22) )
dw? \3vé ’ dve
dm 3¢ o [om d% d 1n L{(v)K(v) 3s d2s
= - v X - FV I:gv— G] + m {K(V)[ d: v E -2 m 2.12)
Ba(v, )| _ ) (BZG(v! u))) o
v w=0 ’ o dvZ w=0

In virtue of inequalities (2.4), (2.5), (2.8), and (2.9) for the
function S(v,w) and its derivatives we can, as before, estimate the
function G(v,w) and its derivatives, applying successively lemma 1 and
the equations (2.10), (2.11), and (2.12).

Thus, the inequalities (2.3) have been proved for a finite inter-
val of varistion of w. In order to establish them for -e <® < =, we




1z

note that the functions S{v,») and G(v,w) have a period with respect

to ® not depending on v aad equal to 4 (see (1.29)). In virtue of .
this, all derivatives of these functions with respect to v and w are
likewise periodic with respect to w with the same period. (In order
to convince oneself of this it is sufficient to differentiate the equa-
tions S(v,w) = S(v,w + 4), G(v,w) = G(v,» + 4) the required number of
times with respect to v and w.) Hence the estimates established for
0 <w<4 are valid for -« <® < w. Thus the lemma has been proven.

Let us further formulate the conditions that must be imposed on
aft) and b(t) in order that the terms that we neglect in equation (1.3)
should be of the order €2 in the time interval O <t < To/e.
Theorem I: If the functions aft) and b(t) are such that the func-
tions vit), Alx), and ¢ {t) are determined from the system of equations
(1.8) and (1.28) such that for 0 <t < Tyfe:
(1) The functions v(t), ¢(t), Alt), and p(r) are bounded together
with their first and second derivatives; )
(2) 1 - QF <v({r) <1 - g2, then the function y*(t) = vo(t) +eyq(t)
for_ 0 <t < Tg/e satisfies equation (0.1) with an accuracy up to terms
0(e?). .
To prove this we must show that the function A(t) (see (1.3)) is
bounded for 0 <t < Tp/e.
Let us write out the expressions
~
Yo(t) = A(z) S{vir), o(t)], y1(t) = o(r) Glv (), o(t)]
3% 38 (v, 2 3%8(v,)
—= = A"S(v,w) + (2Aw? + AV") + Av'
o2 v 3va L
(2.13)
dy1 G (v,w d3fy1 ; OG(v,w . %G (v ,w)
> O ° ? oot~ ° T Py v
Bzy 2
L oon ny 96 (v,w) 2 9%(v,w) .
—_ 2511 1
o7 Glv,w) + (2p'v' + pv") =2 + pv wE

From the conditions of our theorem and lemma 2 it follows that all
the magnitudes entering formulas (2.13) are bounded for 0 <t < To/e.

Turning to the expression for A(t) (see (1.3)), we see that it is not
difficult to compute a number P such that for O <t < To/e

[Aa(t)] <P (2.14)

2ye-d
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From inequality (2.14) in virtue of equation (1.3) the assertion of
our theorem follows.

The above-proven theorem permits us to surmise that the functions

¥o(t) = Alx) S[v(x), o(x)], (%%)o - A(t)e(n) asLV('r%J) o(t)]

(2.15)

are respectively the principal terms of the asymptotic expansions of the
solution of equation (0.1) and of its derivative.

In order to prove this, we set

ay
y(t) = yO(T,(D) + ayl('t,(l)) + sY(t), Y,t=0 = 0, -d—t- £=0 =0
. (2.16)

Substituting this expression in (1.2) and using equations (1.4), we
. cbtain

z
acy _ ay _
2oz = e, Yltzo =0 —dt|t=0 =0 (2.17)

where
: 2 22
& (t,Y) = -lea(t) + (a - 3byy - e6bygy; - 3byre )Y -
(e 3byg + t:ZSbyl)Y2 - g2py®
From inequality (2.14) we have the result that for 0 <t < To/e
| (t,0)]<eP (2.18)

Let us denote by W a certain positive number. For the conditions
of theorem I the functions yo(t) and y;(t) are bounded. Hence, if we

- consider the function & (t,Y) for

Y] <w (2.19)

then for 0 gt < To/e the function &(t,y) satisfies the Lipshitz con-
dition with respect to Y:

"I’(t:Y") - @(t:Y')I < LIY" - Y'l (2'20)
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We formulate the theorem.

Theorem II: If the conditions of theorem I are satisfied, then for
OSGS%; OStST(G)) (T(€)=—l—ln[l+£‘g-i—']>

the following inequalities hold:

|9(8) - A()S(v,0)] < He, jg—z - adete) B0 < xe

To prove this we rewrite equation (2.17) in the form

t t1
Y = / f &(n,Y)dn dty (2.21)
o Jo

and apply to it the method of successive approximations:

t
v(0) =ff #n,0)dn dty, . . .,
o J0
t
y(otl) o f / bg(n,x(™yay at;
o 0

Estimating the functions Y¥(0), [¥(o+1) _ y(n)] with the aid of in-
equalities (2.18) and (2.20), we obtain

2 2n+4
0) = n+l) n n+l 1
|70 < ep 2T k3 - ¥(0)] < e (2o + £)7  (2.22)

These estimates are valid for the condition that |Y<n+l)(t)| does
not exceed W. Below we determine a number T(e) < To/e such that for
0<t<T(e) and O < €< & this condition will always be satisfied.
The function Y(t) can be represented in the form

v(t) = v(0) 4 Zw: x(e+l) _ y(o) (2.23)

n=0

Applying inequalities (2.22) for 0 <t < T(e) and O < e < &g, we obtain

x(®) <e (eVI t _ 1) (2.24)

’

278~
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We now determine the number T(e). In virtue of the equation

Y(n+1) = Y(O) + [Y(n+l) - Y(n)]

we have lY(n+l) (t)] < e(P/Llexp(+/T t) - 1]. Hence if we deter 1ne the
number T(e) such that e(P/L)[exp(~/L T (¢)) - 1] = W, then n+l) ()]
for 0<t <T(e) and O0<e <e, will not exceed W. We thus have

T(e) = 715 (1 ¢ 2 i)
We choose the number €y such that
4L-h1@_+lm l)<-T-9
L P &/~ &
Then, evidently T(e) < To/e for O < e < g;-

From (2.21) we have

t t
,%I s { | (£,0) fat + { | ®(t,Y) - &(t,0)]at  (2.25)

Using inequalities (2.18), (2.20), and (2.24) for 0 <t < T(e) and
0 < e <egy, we obtain -

t
l% _<_etP+L[ lYIdts;—j—i-(e'/it_l)Se_%(eﬁ‘l'(e) - 1) = IV

(2.26)
From (2.16) we have
Y(t) - Afr) s(v,0) =elpG(v,w) + Y(t)]

- A(x)o(x) Bl e[A'S(v,w) b oayr Blna) o 6(e)

ay oG (v,w
ST oreey Tyt sp'G(v,w)]

(2.27)
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In virtue of the conditions of the proven theorem, lemma 2, and in-
equalities (2.24) and (2.26), the functions in brackets on the right
sides of equations (2.27) are bounded for O <t < T(e) and O <e <eége
Setting

H = max [ pG(v,») + ¥(t)]
H, =max [AtS(V,w) + Av! §§§lﬁﬁl + po oG(v w)_+§X +epv! 9G(v w)-+sp’G(v,w)
t ’ v dt v
from formulas (2.27) we obtain the inequalities
d; 08(v ,w)

19(6) - A)S(o)] sHe, | - aetr) BB <
valid for 0 <t < T(e) and O < € < €. Thus the theorem has been proved.

3. Investigation of the formulas for the functions v(t), A(t), and

o(t). - Let ¥(7) = K(v(t))e(t); then the system (1.8) and (1.28) assumes
the form

V@) + () = alt), V@) = p@)a(t), w0 @)L(v(r)) = B
(3.1)

where B 1is a constant. The function L(v)(see (1.27)) can be expressed
in terms of elliptic integrals (ref. 5)

L(v) = ALt VEW) - (3 - VIK()

3v

From the first, third, and then second equations of (3.1) succes-
sively, we have

¢2&)= ﬂT! A%1)= ].+v&) B

1+v(t) a(tr) L(v(x))’

avZ2 ()12 (v (%)) _ BZbE (1)
(L +v(1))3 a>(t)

(3.2)

We dwell on the case where the equation (0.1) is linear and a(t) > O.
Assuming in formulas (3.2) b(t) = O, we obtain

1
V@ =0, W) -ak), AR -y YE@ O (5.9)

2ye-d
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Formulas (3.3) agree with the formulas obtained in reference 4.
Using (3.3), the first two formulas of (3.2) can be written in the form

Az(’l’) = A%(’t) L(O_%‘(v](.‘r-)i-)\! x (3.4)

WZ(T) = ¢§(1) i—;;%(gy:

where the subscript 1 denotes the magnitudes referred to the linear
equation.

These formulas make it easier to see the part played by the non-
linear term in equation (0.1).

Let us consider the case where a(t) > 0, b(t) > 0. The system
described by equation (0.1) may now lose stability. This evidently can
occur at the moment when a(t) = b(T)A2(x).

From the first two equations of the system (3.1) it follows that in
this case v(t) = 1. Making use of this fact we obtain from the last of
equations (3.2) the condition of stability

a°(t) 23

1
szz(‘t) < 4:L2£l) _ g’ L(l) - / (l _ gZ)dC =_§_ (3.5)
0

Since the constant B is determined by the initial conditions
B = B(yt=0’ (dy/dt)t=0)’ we can, with the aid of condition (3.5) for the
given time segment [O, tl], determine in the phase plane a region ¢
such that for t = 0 the point represented is within o; then for
o0<t S_tl the system does not lose its stability. The region ¢ evi-

dently is determined by the inequality

3
Bz(y ’t=0’ %%, t=o) < -g— min[:ég;] (3.8)

In order to compare the stability conditions obtained by us with the
stability condition obtained from the quasi-static consideration of equa-
tion (0.1), let us analyze the case

=0, b(0) = 0 (3.7)

2@ | _ [min a(e))®
mm[b2<-r)] ™ [oax b(0) 12 (58]
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For the analysis we make use of formulas (2.15). Substituting in

them .
w(t) = / % at + wg (3.9)
we rewrite them in the form O D
¥o(t) = A(t)sn K(v) /t g(—%g— at + @,
0

U

(%961)0 - AG)¥(r)en K(v) ‘[ Lok ot + wg) an K(3) / wed ot v o

(3.10)
Setting in them t = 0, we obtain wg = 1, A(0) = a.

Since b(0) = 0, the second and third formulas of (3.2) for & =0
give ‘

v(0) =0,  B(a) = A%(0)~/al0) L(0) = 7 n-/a(0) &

Substituting B(a) in condition (3.6) and using (3.8), we obtain

o 4 /2 [min a(t) min a(t)
<773

a(0) max blt) (3.11)

The stability condition obtained from the quasi-static consideration
of equation (0.1) has the following form:

2 « min alt
@ max b7

From the fact that the multiplier on the right side of the inequality

(3.11)
é :{2 min alT <1
n 3 aiOé

it follows that a system that is stable from the guasi-static point of
view may actually turn out to be unstable.

In concluding, the author wishes to express his thanks to A. A,
Dorodnitsyn for the formulation of the problem and the kind attention
that he gave to it.
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